USN-1202-1 : linux-ti-omap4 vulnerabilities

high Nessus Plugin ID 56190

Synopsis

The remote Ubuntu host is missing one or more security-related patches.

Description

Dan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297)

Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858)

Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859)

Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874)

Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880)

Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy.
(CVE-2010-4073)

Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077)

Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081)

Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082)

Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083)

James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157)

Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160)

Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162)

Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668)

Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169)

Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175)

Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242)

Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243)

It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248)

It was discovered that named pipes did not correctly handle certain fcntl calls. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4256)

Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit.
(CVE-2010-4565)

Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044)

Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655)

Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656)

Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463)

Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521)

Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695)

Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy.
(CVE-2011-0711)

Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges.
(CVE-2011-0712)

Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726)

Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010)

Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012)

Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges.
(CVE-2011-1013)

Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016)

Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017)

Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system.
(CVE-2011-1019)

It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078)

Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079)

Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080)

Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service.
(CVE-2011-1082)

Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090)

Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093)

Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160)

Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163)

Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169)

Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534)

Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173)

Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180)

Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182)

Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478)

Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493)

Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495)

Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577)

Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593)

Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748)

Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022)

Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746)

Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770)

Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833)

Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service.
(CVE-2011-2484)

It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy.
(CVE-2011-2492)

Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service.
(CVE-2011-2699)

The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)

Solution

Update the affected package(s).

See Also

http://www.ubuntu.com/usn/usn-1202-1/

Plugin Details

Severity: High

ID: 56190

File Name: ubuntu_USN-1202-1.nasl

Version: Revision: 1.6

Type: local

Agent: unix

Published: 9/14/2011

Updated: 5/26/2016

Supported Sensors: Agentless Assessment, Frictionless Assessment Agent, Frictionless Assessment AWS, Frictionless Assessment Azure, Nessus Agent, Nessus

Risk Information

VPR

Risk Factor: Medium

Score: 6.7

CVSS v2

Risk Factor: High

Base Score: 7.8

Vector: CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C

Vulnerability Information

CPE: cpe:/o:canonical:ubuntu_linux

Required KB Items: Host/Ubuntu, Host/Ubuntu/release, Host/Debian/dpkg-l

Exploit Available: true

Exploit Ease: Exploits are available

Patch Publication Date: 9/13/2011

Reference Information

CVE: CVE-2010-3296, CVE-2010-3297, CVE-2010-3858, CVE-2010-3859, CVE-2010-3874, CVE-2010-3880, CVE-2010-4073, CVE-2010-4075, CVE-2010-4076, CVE-2010-4077, CVE-2010-4080, CVE-2010-4081, CVE-2010-4082, CVE-2010-4083, CVE-2010-4157, CVE-2010-4160, CVE-2010-4162, CVE-2010-4163, CVE-2010-4169, CVE-2010-4175, CVE-2010-4242, CVE-2010-4243, CVE-2010-4248, CVE-2010-4256, CVE-2010-4565, CVE-2010-4649, CVE-2010-4655, CVE-2010-4656, CVE-2010-4668, CVE-2011-0463, CVE-2011-0521, CVE-2011-0695, CVE-2011-0711, CVE-2011-0712, CVE-2011-0726, CVE-2011-1010, CVE-2011-1012, CVE-2011-1013, CVE-2011-1016, CVE-2011-1017, CVE-2011-1019, CVE-2011-1020, CVE-2011-1044, CVE-2011-1078, CVE-2011-1079, CVE-2011-1080, CVE-2011-1082, CVE-2011-1090, CVE-2011-1093, CVE-2011-1160, CVE-2011-1163, CVE-2011-1169, CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-1173, CVE-2011-1180, CVE-2011-1182, CVE-2011-1478, CVE-2011-1493, CVE-2011-1494, CVE-2011-1495, CVE-2011-1577, CVE-2011-1593, CVE-2011-1598, CVE-2011-1745, CVE-2011-1746, CVE-2011-1748, CVE-2011-1770, CVE-2011-1833, CVE-2011-2022, CVE-2011-2484, CVE-2011-2492, CVE-2011-2534, CVE-2011-2699, CVE-2011-2918

USN: 1202-1